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A Transmission/Disequilibrium Test That Allows for Genotyping Errors
in the Analysis of Single-Nucleotide Polymorphism Data
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Center, New York

The present study assesses the effects of genotyping errors on the type I error rate of a particular transmission/
disequilibrium test (TDTstd), which assumes that data are errorless, and introduces a new transmission/disequilibrium
test (TDTae) that allows for random genotyping errors. We evaluate the type I error rate and power of the TDTae

under a variety of simulations and perform a power comparison between the TDTstd and the TDTae, for errorless
data. Both the TDTstd and the TDTae statistics are computed as two times a log-likelihood difference, and both
are asymptotically distributed as x2 with 1 df. Genotype data for trios are simulated under a null hypothesis and
under an alternative (power) hypothesis. For each simulation, errors are introduced randomly via a computer
algorithm with different probabilities (called “allelic error rates”). The TDTstd statistic is computed on all trios
that show Mendelian consistency, whereas the TDTae statistic is computed on all trios. The results indicate that
TDTstd shows a significant increase in type I error when applied to data in which inconsistent trios are removed.
This type I error increases both with an increase in sample size and with an increase in the allelic error rates. TDTae

always maintains correct type I error rates for the simulations considered. Factors affecting the power of the TDTae

are discussed. Finally, the power of TDTstd is at least that of TDTae for simulations with errorless data. Because
data are rarely error free, we recommend that researchers use methods, such as the TDTae, that allow for errors
in genotype data.

Introduction

There is growing interest in the use of single-nucleotide
polymorphisms (SNPs) for the genetic dissection of com-
plex human diseases (Collins et al. 1998). Some reasons
include the following: (1) SNPs are significantly more
abundant than microsatellite polymorphisms (∼1 SNP
for every 500–1,000 base pairs [Chakravarti 1999]) and
therefore are potentially more powerful in detecting link-
age in the presence of linkage disequilibrium (LD)
around disease loci (Risch and Merikangas 1996); (2)
genotyping of SNPs is easier to automate, leading to
higher throughput; (3) some SNP mutations may be
causative of disease phenotypes; and (4) the completion
of the human genome reference sequence should pave
the way for discovery of many of the common poly-
morphisms (Collins et al. 1998).

To take advantage of the greater LD that is expected
between SNP loci and disease loci, population-based
tests of LD (case-control studies) and family-based tests
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of linkage and LD (transmission/disequilibrium tests
[TDTs]) are being considered for data analysis (Risch
and Merikangas 1996; Schork et al. 2001). In the pre-
sent study, we focus on family-based tests. Much work
has been done to determine the statistical properties of
such tests, including the determination of type I error
and power under different genetic models of disease
(Schaid 1996; Sham 1998; Xiong and Guo 1998). How-
ever, it is almost always assumed in these analyses that
the genetic data are without errors. By “errors,” we
mean any miscoding of a person’s correct marker geno-
type. Sources of error include nonpaternity, sample
swaps in the lab, or genotyping errors. In this work, we
focus on random genotyping errors.

Whereas much has been written about methods of
error detection (Lincoln and Lander 1992; Brzustowicz
et al. 1993; Ott 1993; Lunetta et al. 1995; Ehm et al.
1996; Stringham and Boehnke 1996; Ghosh et al. 1997;
O’Connell and Weeks 1998, 1999; Broman 1999;
Douglas et al. 2000; Ewen et al 2000; Giordano et al.
2001), there are only a few recent papers (Göring and
Terwilliger 2000a, 2000b, 2000c, 2000d; Gordon and
Ott 2001) that consider methodology allowing for er-
rors in linkage and/or LD analysis, even though it is
well known that errors in genetic data can have signif-
icant effects on linkage analyses. Such effects include an
increase in the estimated recombination fraction be-
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Table 1

List of All Possible Values for
Function TrP

True Recoded
Trio (G) TrP(G, t)

(0, 1, 0) t
(1, 0, 0) t
(1, 2, 1) t
(2, 1, 1) t
(0, 1, 1) 1 � t
(1, 0, 1) 1 � t
(1, 2, 2) 1 � t
(2, 1, 2) 1 � t
(1, 1, 0) t2

(1, 1, 2) 2(1 � t)
(1, 1, 1) 2t(1 � t)
(0, 0, 0) 1
(0, 2, 1) 1
(2, 0, 1) 1
(2, 2, 2) 1

Table 2

Probabilities (or Penetrances) Pij, for All Pairs of Observed
Recoded Genotypes and True Recoded Genotypes

OBSERVED

RECODED

GENOTYPE

TRUE RECODED GENOTYPE

0 1 2

0 2(1 � � )1 � (1 � � )2 1
2�2

1 2� (1 � � )1 1 � � � (1 � � )(1 � � )1 2 1 2 2� (1 � � )2 2

2 2�1 � (1 � � )1 2
2(1 � � )2

tween markers or between marker and disease (more
generally, an inflation of the map distance for multiple
markers), an increase in type I error rate, a decrease in
power (Ott 1977; Terwilliger et al. 1990; Buetow 1991;
Shields et al. 1991; Goldstein et al. 1997; Heath 1998;
Gordon et al. 1999b), and an incorrect estimation of
background LD (Akey et al. 2001). The purposes of the
present study, therefore, include (1) the introduction of
a new TDT (hereafter known as the “TDTae,” a TDT
allowing for errors) that allows for errors in the analysis,
(2) the assessment of the effect of random genotyping
errors on the type I error rate (rejection of a true null
hypothesis) and power (rejection of a false null hy-
pothesis) of the TDTae, and (3) a comparison between
the performance of the TDTae and a standard TDT
(hereafter referred to as “TDTstd”).

Methods

Error Model

For all our analyses, we assume that the SNP locus
has two alleles, coded as “1” and “2.” We also assume
that each 1 allele has a constant probability �1 of being
incorrectly coded as a 2 allele, and, likewise, each 2 allele
has a constant probability �2 of being incorrectly coded
as a 1 allele. We choose this error model because it is
straightforward, it easily allows for the computation of
the probability Pr (observed genotypeFtrue genotype)
for any person’s true and observed genotypes, and it has
been studied elsewhere for population-based tests of LD
(Gordon and Ott 2001). In addition, it is reasonable to
expect that high-throughput automated SNP genotyping
technology will have such random errors, as is the case
with a number of automated processes (Box et al. 1978;
Wang et al. 1998). Finally, we note that it is straight-

forward to compute our new TDT statistic through use
of this error model.

Statistical Tests

The statistics considered for the null simulations are
(1) a likelihood-based version of the TDT (TDTstd) (Ter-
williger and Ott 1992; Spielman et al. 1993) and (2) the
TDT allowing for errors (TDTae). Matise (1995) showed
that the TDTstd performed in a way equivalent to the
TDT proposed by Spielman et al. (1993), in terms of
power and type I error for simulated genotype data from
multiallelic loci. The sampling frame for this test is a
trio of individuals (father, mother, and child). We present
the TDTae statistic first, since the TDTstd statistic is just
a special case of the TDTae statistic, in which the error
rates �1 and �2 are each set to 0.

For notational simplicity, let “0,” “1,” and “2” rep-
resent the genotypes 1/1, 1/2, and 2/2, respectively. We
shall hereafter refer to these values as the “recoded geno-
types.” Let the symbols Oijk and Tijk represent the ob-
served and true trio, respectively, of genotypes in which
the father has genotype i, the mother has genotype j,
and the affected child has genotype k. For example, O001

is an observed trio in which father and mother both have
recoded genotype 0 (i.e., genotype 1/1), and the child
has recoded genotype 1 (i.e., genotype 1/2). Similarly,
T112 is a true trio in which the father and mother both
have recoded genotype 1 (i.e., genotype 1/2) and the
child has a recoded genotype 2 (i.e., genotype 2/2). Since
we are allowing for errors, there are 3 # 3 # 3 p 27
possible sets of subscripts for O, but each set of sub-
scripts for T must be consistent with Mendel’s laws, so
there are only 15 possible configurations for T. The com-
plete list of 15 configurations may be found in table 1.
From this point forward, we shall use the terms “con-
sistent” and “consistency” to mean, respectively, con-
sistent with Mendel’s laws and a trio that is consistent
with Mendel’s laws.

Let (observing i recoded genotypeFtrueP (� ,� ) p Prij 1 2

recoded genotype p j). Note that Pij is a function of the
error rates. Pij is often referred to as a “penetrance func-
tion.” Also note that there are possible values3 # 3 p 9
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for Pij, and these values are listed in table 2. Furthermore,
let Iijk be the Mendelian indicator function, so that

1, if trio ijk shows consistency
I p .ijk {0, if trio ijk does not show consistency

The genotype-frequency function, , is de-GF(i, p , p )11 12

fined by

p , i p 011

GF(i, p , p ) p p , i p 1 .11 12 12{1 � p � p , i p 211 12

In this function, i represents a recoded genotype, p11 rep-
resents the population frequency of the genotype 1/1, and,
likewise, p12 represents the population frequency of the
genotype 1/2. Finally, let represent the prob-TrP(i, j, k, t)
ability that parents with recoded genotypes i and j trans-
mit a 1 allele to a child with recoded genotype k, where
t p Pr(heterozygous parent transmits a 1 allele to child).
For example, . A list of all valuesTrP(1, 0, 1, t) p 1 � t
of the function TrP is given in table 1.

Given these definitions, we now compute the likeli-
hood of an observed trio of recoded genotypes (i,j,k) as
a function of the parameters t, p11, p12, �1, and �2. The
likelihood is given by

2 2 2

L (t, p , p , � , � ) p P (� , � )���ijk 11 12 1 2 ix 1 2
xp0 yp0 zp0

P (� , � )P (� , � )Ijy 1 2 kz 1 2 xyz

GF(x, p , p )GF(y, p , p )11 12 11 12

TrP(x, y, z, t) . (1)

It is important to note that although equation (1) ap-
pears to sum over all 27 possible combinations of sets
of recoded genotypes, because of the indicator function
Ixyz, only those sets of recoded genotypes that are con-
sistent are added to the likelihood.

If Nijk represents the number of trios observed in our
data set to have recoded genotypes (i, j, k), and if ln is
the loge function, then the overall log-likelihood for an
observed data set as a function of the parameters t, p11,
p12, �1, and �2 is

2 2 2

ln [L(t, p , p , � , � )] p N���11 12 1 2 ijk
ip0 jp0 kp0

ln [L (t, p , p , � , � )] . (2)ijk 11 12 1 2

To compute the TDTae, we first maximize the log-like-
lihood equation (2) over all five parameters. In our sim-
ulations, we maximize the three parameters t, p11, and
p12, over the closed interval [0,1], in increments of .125,

discarding any sets of parameters in which p � p 111 12

. Also, the error parameters �1 and �2 are maximized1
over the closed interval [0, .1], in increments of .0125.
Each log-likelihood equation (2) is therefore maximized
over values. Let the notation represent5 ˆ9 p 59,049 z
the maximum-likelihood estimates (MLEs) of any of the
five parameters in equation (2)—that is, the estimates
that jointly maximize that equation. Next, fix ,t p .5
maximize the log-likelihood equation (2) over the other
four parameters, and let the notation represent thoseˆ̂z
MLEs. Then the TDTae statistic is given by the formula

ˆ ˆ ˆˆ ˆ2 # {ln [L(t, � , � , p , p )]1 2 11 12

ˆ ˆˆ ˆ ˆ ˆˆ ˆ� ln [L(.5,� , � , p , p )]} . (3)1 2 11 12

According to likelihood-ratio theory (Kendall et al.
1991), under the null hypothesis, TDTae is asymptoti-
cally distributed as (a x2 distribution with 1 df). It is2x1

important to note that the TDTae does not require es-
timates of the error parameters �1 and �2 to calculate
the statistic; rather, it provides estimates of these param-
eters under the null hypothesis ( ) and the alter-t p .5
native hypothesis (t maximized jointly over interval
[0.0–1.0] with the other four parameters).

For the TDTstd statistic, we assume that there are no
errors, so that . In this case, equation (1)� p � p 01 2

reduces to

L̃ (t, p , p ) p GF(i, p , p )ijk 11 12 11 12

GF(j, p , p )TrP(i, j, k, t) . (1a)11 12

The symbol in equation (1a) is used to distinguish theL̃
likelihoods for TDTstd from the likelihoods for TDTae.
Because we assume that there are no errors, the recoded
genotypes (i,j,k) are all consistent (see table 1). An im-
portant consequence of this simplification is that the log
likelihood of equation (1a) reduces to

˜ln [L (t, p , p )] p ln [GF(i, p , p )]ijk 11 12 11 12

� ln [GF(j, p , p )]11 12

� ln [TrP(i, j, k, t)] . (1b)

Through examination of equation (1b), we note that
maximizing over the parameter t is independent of max-
imizing over the parameters p11 and p12. Therefore, when
considering the overall log likelihood of the data set,
which is given by the formula
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2 2 2

˜ln [L(t, p , p )] p N I���11 12 ijk ijk
ip0 jp0 kp0

˜ln [L (t, p , p )] , (2a)ijk 11 12

and considering the difference of log likelihoods,

˜ ˜ ˆ ˆˆ ˆ ˆ ˆ ˆ2 # {ln [L(t, p , p )] � ln [L(.5, p , p )]} , (3a)11 12 11 12

it follows from equation (1b) that ˆ ˆˆ ˆˆ ˆp p p , p p p11 11 12 12

and, in fact, the difference (eq. [3a]) is actually inde-
pendent of the parameters p11 and p12. With this under-
standing, we may rewrite equation (3a) as

˜ ˜ˆ2 # {ln [L(t)] � ln [L(.5)]} . (3b)

We shall refer to the value of equation (3b) as TDTstd.
Through use of standard calculus techniques, it is pos-
sible to solve for the MLE in terms of the number oft̂
different observed trios Nijk. Let

x p N � N � N � N � 2N � N ,1 010 100 121 211 110 111

x p N � N � N � N � 2N � N .2 011 101 122 212 112 111

Through use of this notation, the value of t that max-
imizes the log likelihood in equation (3b) isL̃(t)

x1t̂ p . (4)
(x � x )1 2

This value of t is used when computing the test statistic
TDTstd.

Simulations

The data selected for use with the TDT tests consisted
of an SNP locus that has two alleles in the population.
These alleles were coded as “1” and “2.” Each replicate
of each simulation consisted of genotype data from a
number of trios (father, mother, and affected child). We
simulated genotype data under two models: the null
model, in which there was neither linkage nor LD, and
the power model, in which the SNP marker locus was
linked to the disease locus and there was LD between
the marker and the disease locus. We assumed that the
disease locus also has two alleles. For the null simula-
tions, we set a recombination fraction (v) of .5 between
marker and disease, and we assumed that all loci were
in Hardy-Weinberg equilibrium, so that two-locus hap-
lotype frequencies were just the products of the allele
frequencies at each of the two loci. For the power sim-
ulations, two-locus haplotype frequencies were com-
pletely determined by the allele frequencies at each of
the two loci and by an additional parameter, D′. The
value D′ is related to Lewontin’s (1964) D, by the for-

mula , where p� and pd were the′D p D/ min (p p , p p )� 2 d 1

allele frequency of the wild-type allele and the disease
allele, respectively, at the disease locus, and p1 and p2

were the allele frequencies of the 1 allele and 2 allele,
respectively, at the SNP marker locus. The values of D′

considered for these simulations were .5 and .8. From
this point forward, the term “m% LD” (meaning “the
%LD is m%”) for some integer m and some power
simulation means that . For example,′D p .01 # m
20% LD means that .′D p .2

In all power simulations, we assumed that disease lo-
cus and marker locus were completely linked ( ).v p 0
We assert that this assumption is reasonable, given the
dense coverage that SNPs have throughout the human
genome (Chakravarti 1999).

For both the null and power simulations, we consid-
ered sample sizes of 100 and 500 trios. Allele frequencies
for the marker locus were set either at .5 each (equal
allele frequencies) or at .25 for the 1 allele in all simu-
lations. For the LD simulations, we considered allele
frequencies of .001 (rare) and .2 (common) for the dis-
ease (non–wild type) allele. As above, we used the no-
tations “�” and “d” to refer to the wild-type and disease
alleles, respectively, at the disease locus.

Genotype data for the null simulations were created
by SIMULATE (Terwilliger and Ott 1994; SIMULATE
ftp site), and data for the power simulations were created
by FASTSLINK (Ott 1989; Weeks et al. 1990; Statgen
Software Web site). For the power simulations, there
were two modes of inheritance for the disease locus:
recessive (a fully penetrant recessive model with no phe-
nocopies), and dominant (a reduced-penetrance domi-
nant model, in which the penetrance of each of the geno-
types [at the disease locus] �d and dd was .6, and the
penetrance of the genotype �� was .02). The recessive
disease model was chosen because it has been shown
(Terwilliger and Ott 1992) that the TDT statistic is most
powerful for such a disease model. The dominant disease
locus model was chosen to reflect a more “realistic”
disease model for complex diseases.

The pairs of error rates (�1, �2) we assumed for the
marker locus were (.01, .01), (.01, .05), (.05, .01), (.05,
.05), (.05, .10), and (.10, .05). We chose these pairs to
provide a sense of the performance of the test statistics
under a broad range of error rates. Errors were intro-
duced randomly and independently into the genotype
data files, by means of a computer program. For each
simulation, the proportion of trios that showed consis-
tency was recorded. In table 3, we report the average
proportion of trios (over 1,000 replicates) that showed
consistency.

Throughout this article, the terms “type I error rate”
and “power,” at the a% level of significance for a par-
ticular statistic, mean the proportion of replicates for a
particular null or power simulation, respectively, that
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Table 3

Results of Null Simulations

NO. OF

TRIOS

1-ALLELE

FREQUENCY �1 �2

AVERAGE

PROPORTION OF

CONSISTENT

PEDIGREES

TYPE I ERROR RATE

TDTae TDTstd
a

5% Level 1% Level 5% Level 1% Level

100 .25 .01 .01 .984 .054 .006 .051 .011
100 .25 .01 .05 .941 .051 .010 .102 .024
100 .25 .05 .01 .969 .061 .005 .085 .028
100 .25 .05 .05 .929 .042 .009 .112 .036
100 .25 .05 .10 .887 .052 .011 .174 .068
100 .25 .10 .05 .913 .055 .014 .185 .063
100 .50 .01 .01 .985 .046 .009 .065 .012
100 .50 .01 .05 .958 .055 .009 .056 .007
100 .50 .05 .01 .958 .046 .015 .040 .006
100 .50 .05 .05 .935 .053 .009 .061 .009
100 .50 .05 .10 .906 .054 .015 .059 .014
100 .50 .10 .05 .906 .042 .009 .059 .016
500 .25 .01 .01 .984 .052 .013 .078 .022
500 .25 .01 .05 .942 .048 .008 .268 .118
500 .25 .05 .01 .969 .058 .012 .163 .047
500 .25 .05 .05 .928 .048 .008 .411 .201
500 .25 .05 .10 .886 .045 .009 .606 .395
500 .25 .10 .05 .912 .052 .011 .631 .386
500 .50 .01 .01 .985 .052 .012 .067 .010
500 .50 .01 .05 .958 .046 .010 .056 .014
500 .50 .05 .01 .959 .042 .008 .055 .006
500 .50 .05 .05 .932 .052 .014 .041 .008
500 .50 .05 .10 .904 .046 .010 .063 .010
500 .50 .10 .05 .905 .058 .012 .060 .011

a Values in boldface italics have 95% CIs that do not contain a set level of significance (5%, 1%), based on
the method for establishing CIs (see Results section, Null Simulations).

exceed , where refers to the2 2x (.01 # a) x (.01 # a)1 1

(two-sided) cutoff for a x2 statistic with 1 df. The type
I error rate at the 5% and 1% levels of significance are
reported for null simulations in table 3, and the power
at the 5% and 1% levels of significance are reported for
power simulations in tables 4 and 5.

Maximization over Three Parameters for Power
Simulations

Although it is possible to maximize the likelihood
equation (2) over all five parameters, the process is com-
putationally intensive. Therefore, for our power simu-
lations (tables 4 and 5), we assumed that we knew the
values of the error rates �1 and �2 used to generate errors
and only maximized the log-likelihood equation (2) over,
at most, three parameters. It is true that this assumption
has the potential effect of increasing the power of the
TDTae for these simulations, but comparisons of the
power from the TDTae maximizing over three parame-
ters versus five parameters did not show an appreciable
increase in power in favor of the three-parameter sim-
ulations (data not shown), whereas the reduction in com-
putation time was appreciable (a factor of 92).

Power Comparison

The TDTae statistic has the advantage of allowing for
errors in the analysis of SNP genotype data, but at the
computational cost of maximizing over five parameters
(all parameters but t are nuisance parameters), in con-
trast to the TDTstd, which maximizes over one parameter.
In theory, both statistics are asymptotically disturbed as

and, given a dense enough grid search, there is no2x1

difference in power between the two methods. In prac-
tice, however, the exact maximum likelihood for the
TDTae is most likely not achieved when maximizing over
the five parameters, because of computational limita-
tions. For the TDTstd, the maximum likelihood is always
achieved through use of the value of in equation (4).t̂

To assess the effect that maximization over an addi-
tional four parameters has on the power of the TDTae,
we performed power simulations in which there are no
errors in the genotype data created. Each simulation is
determined by two factors: the number of trios simulated
(100, 200, 500, and 1000) and the 1-allele frequency at
the marker locus (.25, .50). In all simulations, the dis-
ease-allele frequency (pd) was .20, v between the disease
and the marker locus was 0, and the %LD was 50. For
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Table 4

Results of Power Simulations with TDTae for a Fully Penetrant
Recessive Disease Model, 50% LD, and a .001 Disease-Allele
Frequency

NO. OF

TRIOS

1-ALLELE

FREQUENCY �1 �2

POWER

5% Level 1% Level

100 .25 .01 .01 .916 .742
100 .25 .01 .05 .768 .528
100 .25 .05 .01 .879 .681
100 .25 .05 .05 .749 .500
100 .25 .05 .10 .537 .302
100 .25 .10 .05 .660 .419
100 .50 .01 .01 1.000 .995
100 .50 .01 .05 .999 .981
100 .50 .05 .01 .999 .988
100 .50 .05 .05 .990 .956
100 .50 .05 .10 .950 .858
100 .50 .10 .05 .972 .904
500 .25 .01 .01 1.000 1.000
500 .25 .01 .05 1.000 .999
500 .25 .05 .01 1.000 1.000
500 .25 .05 .05 .999 .998
500 .25 .05 .10 .990 .958
500 .25 .10 .05 .999 .992
500 .50 .01 .01 1.000 1.000
500 .50 .01 .05 1.000 1.000
500 .50 .05 .01 1.000 1.000
500 .50 .05 .05 1.000 1.000
500 .50 .05 .10 1.000 1.000
500 .50 .10 .05 1.000 1.000

Table 5

Results of Power Simulations with TDTae for a Reduced Penetrance
Dominant Model, 80% LD, and a .001 Disease-Allele Frequency

NO. OF

TRIOS

1-ALLELE

FREQUENCY �1 �2

POWER

5% Level 1% Level

100 .25 .01 .01 .169 .075
100 .25 .01 .05 .116 .037
100 .25 .05 .01 .154 .060
100 .25 .05 .05 .129 .039
100 .25 .05 .10 .097 .033
100 .25 .10 .05 .117 .031
100 .50 .01 .01 .404 .190
100 .50 .01 .05 .335 .165
100 .50 .05 .01 .398 .193
100 .50 .05 .05 .287 .124
100 .50 .05 .10 .228 .097
100 .50 .10 .05 .243 .092
500 .25 .01 .01 .602 .301
500 .25 .01 .05 .377 .160
500 .25 .05 .01 .542 .282
500 .25 .05 .05 .356 .161
500 .25 .05 .10 .276 .107
500 .25 .10 .05 .330 .151
500 .50 .01 .01 .985 .927
500 .50 .01 .05 .962 .809
500 .50 .05 .01 .975 .854
500 .50 .05 .05 .928 .713
500 .50 .05 .10 .774 .577
500 .50 .10 .05 .834 .628

each simulated data set (replicate) in each simulation,
the TDTstd and TDTae were computed as described
above. A total of 250 replicates were created and ana-
lyzed for each simulation. Power curves for each method
are presented in figure 1.

Results

Null Simulations

Table 3 presents a summary of the results for our null
simulations. Each row records the number of trios con-
sidered, the error rates �1 and �2, the frequency of the
1 allele at the marker locus, the average proportion of
consistent trios in each replicate (averaged over 1,000
replicates), and the type I error rates at the 5% and 1%
levels of significance for the TDTae and TDTstd statistics.
We indicate, in boldface italic type, those simulations
for which the 95% confidence interval (CI) (Fisher 1960)
of the type I error rate does not include the chosen sig-
nificance level, indicating that the test statistic showed
an inflation in type I error for this particular simulation.

From studying table 3, we see that the TDTae statistic
maintains a correct type I error rate in all simulations,
for each of the significance levels (5% and 1%). On the
other hand, the TDTstd statistic shows an inflation in the
type I error rate for a number of simulations. In fact,

with the exception of the (.01, .01) pair of error rates,
the TDTstd always shows inflation in type I error when
the 1-allele frequency is .25. As a way of comparing the
increases in type I error across different levels of signif-
icance, we consider the ratios (type I error rate at 5%
level)/.05 and (type I error rate at 1% level)/.01. The
largest ratio occurs for 500 trios, a 1-allele frequency of
.25, the pair of error rates (.10, .05), and a significance
level of 1%. Under these conditions, we see a ratio of
38.6, an ∼40-fold increase in type I error.

For the equal allele frequency case (1-allele frequency
p .5), the TDTstd statistic shows a small inflation in the
type I error rate when the pair of error rates is (.01,
.01), for both the 100- and the 500-trio case. However,
it maintains a correct type I error rate for all other sim-
ulations of the equal allele frequency case. We hypoth-
esize that, for our error model, TDTstd maintains a cor-
rect type I error rate only when marker-allele frequencies
are equal.

Intuitively, the reason for an increase in type I error
rate for the TDTstd test statistic for unequal allele fre-
quencies seems clear. When the allele frequencies are
more divergent—as opposed to more equal—there are
more trios in which both parents are homozygous. When
errors are introduced into trios in which both parents
are homozygous and the resultant trio is consistent, the
observed (and incorrect) trio of genotypes is counted in
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Figure 1 Average power for the TDTstd and TDTae statistics, for errorless data sets in which the 1-allele frequency p .25, , andp p .2d

%LD p 50, and for which the disease-locus model is a fully penetrant recessive locus. Each average is computed over 250 replicates. The
suffixes “-std” and “-ae” in the Significance Level legend indicate power for the TDTstd and TDTae statistics, respectively.

the estimation of the parameter t, introducing a bias in
t away from its true value of .5. In addition, although
it seems counterintuitive that the TDTstd type I error rates
are so much greater for a larger sample than for a smaller
one, we comment that, even though the percentage of
trios that show Mendelian consistency is the same, on
average, for the same error rates in the 100- or 500-trio
cases, the actual number of trios that have errors and
that show Mendelian consistency is approximately five
times as large in the 500-trio case as in the 100-trio case.
As mentioned above, when marker-allele frequencies are
unequal, a significant number of these trios (specifically,
the trios in which true homozygous parents are incor-
rectly coded as heterozygous) will be counted in the es-
timation of the parameter t. For the 500-trio case, we
expect that five times as many such trios are counted as
for the 100-trio case, thus increasing the type I error
rate, as was observed in the simulation results.

Because of the significant and consistent increase in
type I error rate of the TDTstd statistic for unequal allele
frequencies, we conclude that it is not a useful test in
the presence of errors. For our power simulations, we
therefore focus on the TDTae statistic. Finally, we note
that, for all simulations considered, the average pro-
portion of trios that display consistency is �88%, and
this average increases to 93% when error rates of �.05
are considered.

Power Simulations

Here we present tables for some of our simulations
and discuss results for all of the simulations. The number
of tables has been reduced, to conserve space. Table 4
provides simulation results for the fully penetrant re-
cessive disease model with 50% LD and a .001 disease-
allele frequency. Table 5 presents simulation results for

the reduced-penetrance dominant disease with 80% LD
and a .001 disease-allele frequency.

In studying these two tables, we notice some common
patterns. First, we notice, for each sample size (100 or
500 trios) and each set of allele frequencies (1-allele
frequency p .25 or .5), that, as the values of �1 and �2

increase, the power of the TDTae statistic decreases. This
decrease due to larger error rates is to be expected, since
an increase in the value of the error rates decreases the
probability that any single true trio of genotypes is as-
sociated with a given observed trio of genotypes. With
regard to specific error rates, it is interesting to note that
power was reduced most when �2 was largest—that is,
when error was introduced into the 2 allele, which is
the allele in coupling with the disease allele d. A second
observation is that, for each sample size and each pair
of error rates, the power of the TDTae is greater when
marker-allele frequencies are equal, as opposed to when
the 1-allele frequency is .25. A third observation is that,
particularly for the dominant mode of inheritance, to
achieve any kind of power with the TDTae (say, power
1.60), one needs large sample sizes (�500 trios) and
small error rates. In fact, for sample sizes of 500 trios
with a dominant mode of inheritance (table 5), power
is 1.6 at the 5% level for 7/12 simulations and at the
1% level for 5/12 simulations.

As mentioned in the Methods section, power simu-
lations were also performed for the recessive mode of
inheritance, in which the disease-allele frequency pd was
.20 and LD was 50%, as well as for conditions of 80%
LD with two sets of disease-allele frequencies (p pd

or .20). For the case of 50% LD, , power.001 p p .20d

at the 5% level was .69–1.00, and power at the 1% level
was .46–1.00. With one exception (100 trios, � p1

and ), power at the 5% and 1% levels was.05 � p .102
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1.8 and 1.62, respectively. When the sample size was
500 trios, all power (at the 5% and 1% levels) was 1.99.
For recessive simulations in which there was 80% LD,
power at the 5% level was .93–1.00, and power at the
1% level was .78–1.00. As was the case for 50% LD
and —with one exception (100 trios, ,p p .20 � p .05d 1

, )—power at the 5% and 1% levels� p .10 p p .0012 d

was 1.98 and 1.93, respectively.
For those power simulations with a dominant mode

of inheritance for the disease locus that are not reported
in table 5 (50% LD with or .20, and 80%p p .001d

LD with ), we report the following ranges ofp p .20d

power observed: for the case of 50% LD ( orp p .001d

.20), power at the 5% level was .07–.99, and power at
the 1% level was .02–.98. In general, for sample sizes
of 100 trios, power was low. In fact, the largest power
observed at the 5% level for 100 trios was .60. For
simulations in which there was 80% LD and ,p p .20d

power at the 5% level was .19–1.00, and power at the
1% level was .03–1.00. As mentioned above, in all cases
in which other variables (%LD, allele frequencies) were
fixed, power was lowest when the error rates were
largest.

An overall observation that can be made about the
TDTae statistic on the basis of these simulations is that
the factors that influence the power of this statistic are
sample size, mode of inheritance of the disease locus,
marker- and disease-allele frequencies, %LD, and, for
this analysis, error rates �1 and �2. The same factors
affect the power of the TDTstd (Xiong and Guo 1998);
however, the addition of errors into genotype data has
the adverse effect of decreasing the power in comparison
with the power in the errorless data situation.

Power Comparison

Figure 1 presents the results of the power-comparison
simulations. The vertical axis is the power at the a%
level of significance for the TDTstd and TDTae statistics
for simulations, considering four different numbers of
trios: 100, 200, 500, and 1,000. What we glean from
this graph is that, for this simulation, the difference in
power is dependent on both the number of trios con-
sidered and the level of significance. The greatest power
difference is almost .20 when there are 100 trios, and
the level of significance is 0.10%. Note that, at the 5%
level of significance, the greatest power difference is .05,
when the number of trios is 100. Another observation
made from this graph is that, when the sample size is
large enough (�500), there is essentially no difference
in power between the TDTstd and TDTae statistics.

We also performed simulations in which the marker-
allele frequencies were equal. The result of those sim-
ulations was that there was no difference in power be-
tween the TDTstd and TDTae statistics, for any number

of trios or any level of significance. Both statistics had
a power of 1.0 for all simulations.

Summary and Discussion

The purposes of the present study included the assess-
ment of the effects of genotyping errors on a particular
TDT (TDTstd) and on a new TDT (TDTae) that allows
for random genotyping errors in the analysis, the eval-
uation of power for the TDTae under a variety of sce-
narios, and a power comparison between the TDTstd and
the TDTae, when no errors are present in the genotype
data. The results indicated that the TDTstd, when applied
to data that have been “cleaned” (i.e., data in which
inconsistent trios are removed), does not maintain the
correct type I error rate and that the type I error increases
both with an increase in sample size and with an increase
in the error rates . In contrast to this, the� (i � {1, 2})i

TDTae statistic maintains a correct type I error rate for
the simulations considered. The power of the TDTae is
dependent on individual error rates, mode of inheritance
at the disease locus, allele frequencies at the disease and
marker locus, %LD, and sample size. Finally, we note
that, for simulations in which no genotyping errors are
introduced, the power of the TDTstd statistic is at least
that of the TDTae statistic, but this difference in power
decreases as the sample size increases.

It is important to note that the TDTae is designed for
application to data sets in which inconsistent trios are
observed. We comment that the TDTae probably does
not maintain a correct type I error rate when applied
to data in which inconsistent trios have been removed.
Another way of saying this is that the TDTae statistic
should be applied only to data sets that are “raw”—that
is, data sets in which inconsistent trios (if any exist) are
not removed when computing the test statistic.

An interesting result of the present study, although
not its main focus, is that even when error rates are
relatively high ( ), most (188%) trios will� , � � .051 2

display consistency (table 3). This finding agrees with
the analytic solutions of Gordon et al. (1999a, 1999b).
For example, Gordon et al. (1999a) showed that, for

, on average, 190% of trios will show� p � p .051 2

consistency when marker-allele frequencies are equal,
there is no linkage between marker and disease locus,
and the marker locus is in Hardy-Weinberg equilibrium.

The error model assumed in the present study is based
on an assumption of random errors. A question that
arises is whether this assumption is reasonable. For SNP
data, this question will be answered more conclusively
as more SNP genotype data are created and analyzed.
From a statistical viewpoint, however, the real question
is whether statistics like the TDTae are robust to different
error models. This research is work in progress.

Because of the potential increase in power that hap-
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lotype methods have over single-locus methods (Dud-
bridge et al. 2000; Xiong et al. 2000) and because of
the widespread use of microsatellite markers for linkage
and LD analysis (e.g., Lee et al. 2001), a natural ques-
tion to ask is whether the TDTae method can be ex-
tended to a test using multi-locus haplotypes and/or
multi-allelic markers. Perhaps the main challenge of
such extensions is the use of as few parameters for error
rates as is possible. For example, with n alleles at a
marker, the number of possible individual error rates �i

is . We suspect that, for highly polymorphicn(n � 1)
loci, the best approach may be the one recommended
by Schaid (1996) and Spielman and Ewens (1998),
which involves down-coding of alleles and performance
of multiple two-allele tests. We plan to pursue this
research.

Finally, we note that, as is the case with all statistics
applied to genotype data, a reassessment of power
would be needed for whole-genome scans. We plan to
make software available shortly that computes the
TDTae statistic. The code will be freely available.
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